Southern York County School District

Course/Subject: Math Comprehensive Grade Level: 6

Textbook(s)/Materials Used: Ready Pennsylvania Math Instruction, Practice Problem Solving, Assessment, i-Ready Diagnostic \& Instruction

Month(s): August			Unit 0			
Expressions and Equations						
Big Idea	Standard	Eligible Content	Essential Questions \& Lesson Essential Question	Concepts	Vocabulary	Competencies
			Routine Objectives: Use best practices during a Ready mathematics lesson. Identify and explain models or strategies used to solve problems. Critique and compare solution strategies of others and those provided in Ready. Use math talk practices to efficiently share and compare strategies for solving problems. Apply math knowledge and modeling techniques to new, similar problems. Mathematical Objectives: Convert measurement from a larger unit to a smaller unit within the same system.		Convert Numerator Denominator Unit Fraction	

		100 (e.g., 30% of a quantity means $30 / 100$ times the quantity); solve problems involving finding the whole, given a part and the percentage.	What makes a tool and/or strategy appropriate for a given task? How can patterns be used to describe relationships in mathematical situations?			

			points with the same first coordinate or the same second coordinate.	and/or analyze mathematical situations? What makes a tool and/or strategy appropriate for a given task?		
Month(s): December/January						
Expressions and Equations	Unit 3					
Big Idea						

among numbers

 can be represented, compared, and communicated.Mathematical relationships can be represented as expressions, equations and inequalities in mathematical situations.

Patterns exhibit relationships that can be extended, described, and generalized.

Mathematical relations and functions can be modeled through multiple representations and analyzed to raise and answer questions

| dependent and |
| :--- | :--- |
| independent |
| variables. |\quad| factor, |
| :--- |
| quotient, |
| coefficient, |
| quantity). |

M06.B-E.1.1.4 Evaluate expressions at specific values of their variables, including expressions that arise from formulas used in real-world problems.

M06.B-E.2.1.2 Write algebraic expressions to represent real-world or mathematical problems.

M06.B-E.1.1.5 Apply the properties of operations to generate equivalent expressions.

M06.B-E.2.1.1 Use
substitution to determine whether a given number

Understand that the properties used with numbers also apply to expressions with variables. Recognize and generate equivalent expressions.
Substitute values into
expressions to prove equivalency.

Lesson 18
Use models to write and solve equations.
Use substitution to determine whether a given number in a specified set makes an equation true.

Lesson 19
Recognize that real-world mathematical problems can be expressed using a variable to represent an unknown. Recognize that both sides of an equation are equal, and whatever operation is performed on one side of the equation must be done on the other side to maintain the equality. Write and solve equation that represent real-world mathematical problems that use variables and involve nonnegative rational numbers.

Lesson 20

Write an inequality that represents real-world mathematical problems containing a constraint or a condition (<, >).

Solve and interpret one variable equations or inequalities in real world and mathematical problems.

	M06.B-E.3.1.1 Write an equation to express the relationship between the dependent and independent variables. M06.B-E.3.1.2 Analyze the relationship between the dependent and independent variables using graphs and tables and/or relate these to an equation.	How can mathematics support effective communication? How can recognizing repetition or regularity assist in solving problems more efficiently? How is mathematics used to quantify, compare, represent, and model numbers? How can mathematics support effective communication? How are relationships represented mathematically? How can expressions, equations and inequalities be used to quantify, solve, model, and/or analyze mathematical situations? How can recognizing repetition or regularity assist in solving problems more efficiently? How can data be organized and represented to provide insight into the relationship between quantities?			
Month(s): February/March		Unit 4			
Geometry					
Big Idea \quad Standard	Eligible Content	Essential Questions \& Lesson Essential Question	Concepts	Vocabulary	Competencies

Patterns exhibit relationships that can be extended, described, and generalized. Geometric relationships can be described, analyzed, and classified based on spatial reasoning and/or visualization.	CC.2.3.6.A. 1 Apply appropriate tools to solve realworld problems involving area, surface area, and volume.	M06.C- G.1.1.1 Determine the area of triangles and special quadrilaterals (i.e., squares, rectangles, parallelogram, rhombus, and trapezoid). M06.C- G.1.1.2 Determine the area of irregular or compound polygons. M06.C- G.1.1.4 Given coordinates for the vertices of a polygon in the plane, use the coordinates to find side lengths and area of the polygon (limited to triangles and special quadrilaterals) M06.CG.1.1.5	Lesson 22: Relate the area of triangles and the area of rectangles Identify the relationship between bases and heights of polygons. Decompose and compose polygons into rectangles and triangles to find the area. Use formulas to find the areas of triangles and special quadrilaterals. Lesson 23 Understand that a line segment from one coordinate pair to another represents a distance. Understand that if two points have the same x or y coordinates they are on the same vertical or horizontal line. Find the vertical or horizontal distance between two points on the coordinate plane. Plot points in all four quadrants of the Cartesian coordinate plane. Plot a polygon in the Cartesian coordinate plane with given coordinates. Lesson 24 Recognize that surfaces of some three-dimensional shapes are composed of two dimensional faces (polygons). Use a net to represent a 3-D figure (polyhedron). Use a net and a formula to find the surface area of a	Area Surface Area Volume	Polygon Compound polygon Irregular Polygon Base Net Surface Area Triangular Prism Pyramid	Determine the area of triangles, quadrilaterals, irregular polygons and compound polygons. Calculate the area of a polygon on a plane given the coordinates of the vertices. Find volumes of right rectangular prisms with fractional edge lengths. Use nets to find surface area of 3 dimensional figures.

Big Idea	Standard	Eligible Content	Essential Questions \& Lesson Essential Question	Concepts	Vocabulary	Competencies
Numerical quantities, calculations, and measurements can be estimated or analyzed by using appropriate strategies and tools. Mathematical relations and functions can be modeled through multiple representations and analyzed to raise and answer questions. Data can be modeled and used to make inferences.	CC.2.4.6.B. 1 Demonstrate an understanding of statistical variability by displaying, analyzing, and summarizing distributions.	M06.D-S.1.1.4 Relate the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered. M06.D-S.1.1.2 Determine quantitative measures of center (e.g., median, mean, mode) and variability (e.g., range, interquartile range, mean absolute deviation). M06.D-S.1.1.1 Display numerical data in plots on a number line, including line plots, histograms,	Lesson 26 Understand that data generated from statistical questions will vary. Recognize that responses to statistical questions have variations that can be used to draw conclusions about the data set. Identify the difference between a statistical and non-statistical question. Create models that represent the data from statistical questions such as charts and tables. Lesson 27 Understand that a data distribution can be viewed by its center (mean, median and mode), spread (range), and overall shape, and it can be analyzed by its distribution. Understand that the mean, median, and mode of a set of numerical data are measures of center of that set of data. Understand that the range of a set of numerical data is a measure of how the data varies. Lesson 28 Create line plots, histograms, and box plots, including labeling and scaling axes appropriately.	Data Distributions	Statistical Questions Cluster Skewed left Skewed right Symmetrical graphs Peak Outlier Mean Median Mode Range Dot plots Mean absolute deviation (MAD) Lower quartile Upper quartile Box plot Interquartile Range (IQR)	Display data in dot plots, histograms and box-and whisker plots. Determine quantitative measures of center and variability. Choose the appropriate measure of center and variability for a set of data.

